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We study the interaction of counterpropagating pulse solutions for two coupled complex cubic-quintic
Ginzburg-Landau equations in an annular geometry. For small approach velocity we find as an outcome of such
collisions several results including zigzag bound pulses, stationary bound states of 2� holes, zigzag 2� holes,
stationary bound states of � holes, zigzag bound states of � holes, propagating 2� holes, and propagating �

holes as the real part of the cubic cross coupling between the counterpropagating waves is increased. We
characterize in detail the collisions giving rise to the three states involving � holes as an outcome.
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Over the last few years it has become clear that the cubic-
quintic complex Ginzburg-Landau �CGL� equation is becom-
ing more and more important �1–4� for the description of
dissipative optical solitons �5–9�. In particular, in Ref. �2�
�and references cited therein� it has been argued that coupled
cubic-quintic CGL equations are relevant to model twin-core
fiber lasers. The cubic-quintic CGL equation is known to
arise as a prototype envelope equation �10� near the onset of
a weakly inverted oscillatory instability �11–13�. Thual and
Fauve showed �14� that this equation permits stable station-
ary localized solutions in contrast to the cubic-quintic GL
equation with real coefficients. Following the pioneering pa-
per by Thual and Fauve a number of groups studied various
aspects of localized solutions of the cubic-quintic CGL equa-
tion �15–20� including analytic approximation schemes
�17,18�, “two-particle” solutions �20�, and stable hole solu-
tions �19�.

Hole solutions, which have been of interest in nonlinear
optics for dispersive systems for decades, also became of
interest for systems with a substantial amount of dissipation

when Nozaki and Bekki showed analytically that the cubic
CGL equation has stable hole solutions �21�. However, it
became clear fairly soon that the Nozaki-Bekki holes are
structurally unstable �13,22�, meaning that, for example, add-
ing a small stabilizing quintic term to the cubic CGL equa-
tion leads to the disappearance of the hole solutions. In 1991
Sakaguchi reported the stable existence of two classes of
hole solutions for the cubic-quintic CGL equation �19�. Quite
recently �3� we have shown that additional classes of hole
solutions including breathing holes stably exist for the cubic-
quintic CGL equation.

FIG. 1. �Color online� Results obtained for the interaction of
two stationary pulses while keeping all parameters except for cr and
v fixed. A refers to annihilation, I to interpenetration, B-P-st to a
stationary bound pair of pulses, B-P-zz to a zigzag bound pair of
pulses, B-2�-st to a stationary bound pair of 2� holes, B-2�-zz to
a zigzag bound pair of 2� holes, B-�-st to a stationary bound pair
of � holes, B-�-zz to a zigzag bound pair of � holes, �+� to
counterpropagating � holes, and H to the spatially homogeneous
solution. �=−0.112, �r=1, �i=0.2, �r=−1, �i=0.15, Dr=1, Di=0,
cr=v, ci=0, c1=−0.2, c2=−0.166, c3=0.001 38, c4=0.001 46, c5

=0.0046, c6=0.0048, c7=0.047, c8=0.061, c9=0.081.

FIG. 2. �Color online� Phase diagram of possible outcomes re-
sulting from the collision of two stationary pulses while keeping all
parameters except for cr and v fixed. I refers to interpenetration,
B-P-st to a stationary bound pair of pulses, B-2�-st to a stationary
bound pair of 2� holes, B-�-st to a stationary bound pair of �
holes, B-�-zz to a zigzag bound pair of � holes, �+� to counter-
propagating � holes, 2�+2� to counterpropagating 2� holes, and
H to the spatially homogeneous solution. The other parameters are
as for Fig. 1.
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Much less work than on single localized solutions has
been done for their interaction. For a single cubic-quintic
CGL equation the interaction of two pulse solutions can lead
to one pulse after the collision �15�; a similar result follows
for hole solutions for which one type of hole was shown to
survive after the interaction �19�. For coupled cubic-quintic
CGL equations it has been shown that, as a function of the
cross coupling between counterpropagating waves, interact-
ing pulse solutions can annihilate, interpenetrate, form a sta-
tionary bound state of two pulses, or lead to a transition to
the spatially homogeneous solution �20,23�. If a stationary
pulse interacts with a pulse that is not in its asymptotic shape
yet, it is also possible that one pulse survives after the colli-
sion �24�. For the interaction of breathing localized solutions
rather complex behavior has been found, including a sensi-
tive dependence on the initial phase of the breathing pulses
�25�. For the cubic-quintic complex Swift-Hohenberg equa-
tion �26�, a generalization of the evolution equation for a
stationary instability derived for the order parameter by
Swift and Hohenberg �27�, similar results as for the interac-
tion of stationary pulse solution for the cubic-quintic CGL
equation have been found �26�.

Here we show that as a function of the strength of the
cubic cross coupling for counterpropagating waves and the
approach velocity a number of very surprising phenomena
not reported before arises when two pulse solutions interact
in an annular geometry. These phenomena include bound
states of 2� and � holes, which can either be stationary or
show a zigzaglike spatiotemporal oscillation. In this connec-
tion we refer to a � hole, when there is a phase jump by �
and when �A � �0 at the defect location. For 2� holes, �A�
does not touch zero near the center of the hole and the phase
variation is continuous. Most importantly, however, it
emerges that the interaction of two stationary counterpropa-
gating pulse solutions can yield two counterpropagating �
holes as a result of the interaction over a fairly large range of
parameters.

The starting point of our investigations is two coupled
subcritical cubic-quintic complex Ginzburg-Landau equa-
tions for counterpropagating waves with periodic boundary
conditions:

�tA − v�xA = �A + ��r + i�i��A�2A + ��r + i�i��A�4A

+ �cr + ici��B�2A + �Dr + iDi��xxA , �1�

FIG. 3. �Color online� Time evolution of the interaction of two stationary pulse solutions resulting in two counterpropagating � holes for
a box size L=400. The plots always show the moduli of the structures traveling to the right on top and the ones traveling to the left on the
bottom for the four times T��a� 0, �b� 1000, �c� 2600, and �d� 3800. �=−0.112, �r=1, �i=0.2, �r=−1, �i=0.15, Dr=1, Di=0, cr=v
=0.08, ci=0.
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�tB + v�xB = �B + ��r + i�i��B�2B + ��r + i�i��B�4B

+ �cr + ici��A�2B + �Dr + iDi��xxB , �2�

where A�x , t� and B�x , t� are complex fields and where we
have discarded quintic cross-coupling terms for simplicity.
Equations �1� and �2� arise as prototype equations for a
weakly inverted oscillatory bifurcation to traveling waves. A
and B are slowly varying envelopes. The fast spatial and
temporal variations have already been split off when writing
down the coupled envelope equations. To compare with mea-
surable quantities such as, for example, temperature varia-
tions in fluid dynamics, these rapid variations must be taken
into account �1,10–12,28�.

We have carried out a numerical study of Eqs. �1� and �2�
using the following parameter values: �=−0.112, �r=−�r
=Dr=1, �i=0.2, �i=0.15, Di=0, and ci=0. The coefficients
�r, Dr, and �r have been chosen so that stable pulse solutions
are possible �14,16�: a stabilizing quintic term, a destabiliz-
ing cubic term, positive diffusion, and at least one nonvan-
ishing imaginary part �29�. As a numerical method we used
fourth-order Runge-Kutta finite differencing. We used typi-
cally N=1000 points with dx=0.4 �corresponding to a box
length of L=400� and a time step of dt=0.1. For comparison
we also studied smaller and larger box sizes to guarantee that
there are no finite size effects for sufficiently large box size.
We performed up to 2�106 iterations to check for long tran-
sients corresponding to a total time of T=2�105. We also
changed dx and dt to verify that none of the results presented
depends sensitively on the discretization used. We note that
there is at maximum a small shift in the values of � for
which some of the solutions with a narrow range of stable
existence arise. As initial conditions we used stationary
pulses of a single cubic-quintic CGL equation in their
asymptotic state: their envelope is not changing as a function
of time and their speed is constant.

In Fig. 1 we have plotted our results along the line v
=cr�c while keeping all the other parameters fixed to the
values given above. This choice has been made to cover a
large fraction of the phenomena to be expected as both cr and
v, are varied. In Fig. 2 we have plotted the phase diagram for
0�v�0.1 and 0�cr�0.1. Figure 2 shows that, while the
diagram is rather complex in detail, almost all qualitatively
different outcomes are already observed on the diagonal v
=cr. The complete, rather complex phase diagram in the vi-
cinity of cr=v=0 will be presented in �30�.

Inspecting this “phase diagram,” one realizes that, in ad-
dition to the known outcomes of collisions between two sta-
tionary pulses, namely, annihilation, interpenetration, a
bound pair of stationary pulses, and the transition to the spa-
tially homogeneous solution, there are six other classes of
behavior. As c is increased above the interval for which sta-
tionary bound pulses are stable, one finds first between c3
=0.001 38 and c4=0.001 46 a bound state of pulses undergo-
ing a zigzag motion in time and space. Between c4
=0.001 46 and c5=0.0046 we find a bound state of stationary
2� holes, which is followed by a bound state of 2� holes
undergoing a zigzag motion in time and space over the fairly
narrow interval c5=0.0046 and c6=0.0048. Since the bound
states are undergoing a zigzag motion in time and space, they

are rather delicate objects and their basin of attraction is
correspondingly fairly small. As c is increased further, we
obtain a bound state of stationary � holes over the rather
large range from c6=0.0048 to c7=0.047 followed by a
bound state of � holes, which undergoes a zigzag motion in
time and space over the range from c7=0.047 to c8=0.061.
We note that the range of stable existence of the bound state
of � holes showing a zigzag motion is much larger than that
of the other two classes of bound states discussed above

FIG. 4. �Color online� �a� Snapshot of the zigzag bound state of
two � holes �cr=v=0.054�. �b� x-t plot for min��A � , �B � � for the
zigzag bound state of two � holes �cr=v=0.054�. �c� x-t plot for
min��A � , �B � � for a stationary bound state of two � holes �cr=v
=0.04�. All other parameter values are as for Fig. 3.
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showing a zigzag motion. Stable counterpropagating � holes
exist between c8=0.061 and c9=0.081, when they are re-
placed by the spatially homogeneous solutions. It is the last
three classes of states involving � holes that we will discuss
in more detail in the following.

In Fig. 3 we have plotted the time evolution of the inter-
action between two stationary pulses leading to two propa-
gating � holes as a result of the interaction. We have chosen
cr=v=0.08. We note that the localized region spreads as
soon as the stationary pulse solutions start to interact, while
maintaining a hump, which is a sink of traveling waves.
Eventually two counterpropagating � holes result, which in-
teract only very little, visible only via the small depression in
the constant background of the hole propagating in the op-
posite direction.

As the magnitude of the cross coupling between counter-
propagating waves, cr, is reduced, one obtains a bound pair
of � holes undergoing a spatiotemporal zigzag motion. This
result is displayed in Fig. 4. In Fig. 4�a� we show a snapshot
of this zigzag bound state at cr=v=0.054 and in Fig. 4�b� a
space-time plot of this state revealing a characteristic fre-
quency of oscillation of the zigzag motion. As the value of
the cubic cross-coupling term is further reduced a stationary
bound state of two � holes results as is demonstrated in the
x-t plot shown in Fig. 4�c� for cr=v=0.04. The underlying
mechanism for the transition to the zigzag bound state of two
� holes is a Hopf bifurcation. We have thus shown that vary-
ing the magnitude and sign of the cubic cross-coupling co-
efficient cr leads to a renormalization of � and thus to many
different states as a result. That this renormalization plays an

important rule in the investigation of coupled cubic-quintic
CGL equations was noticed first in Ref. �31�, where the in-
fluence of noise was investigated.

In conclusion, we have shown in this Rapid Communica-
tion that, as the result of the interaction between two station-
ary propagating pulses, one obtains for coupled cubic-quintic
complex CGL equations in an annular geometry a number of
unexpected results. In addition to the results found in previ-
ous investigations we find five types of bound states: station-
ary bound states of 2� holes, and of � holes as well as
bound states of pulses, 2� holes, and � holes which show a
zigzag motion in space and time. The most important result
of the present study, however, was the conversion of two
counterpropagating stationary pulses into two counterpropa-
gating � holes over a fairly large range in parameter space.
Clearly this conversion deserves further detailed physical
and mathematical investigations. Since the cubic-quintic
CGL equation is a prototype equation, which is of growing
importance, for example, for the field of nonlinear data trans-
fer in optics, we anticipate that the results presented here will
also stimulate experiments in the near future.
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ACT15. J.C. thanks FONDECYT �Project No. 1050660� for
financial support.
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